Solver name QMaxSAT

Authors Miyuki Koshimura and Tong Zhang (Kyushu University, Japan)

Description QMaxSAT(Q-dai¹ MaxSAT solver) is a Partial MaxSAT solver built on top of MiniSat 2.0[1]. This follows a SAT-based approach developed by Daniel Le Berre in SAT4Jmaxsat.

Given a Partial MaxSAT instance $\phi = \{H_1, \ldots, H_m, S_1, \ldots, S_n\}$ where $H_i(1 \le i \le m)$ is a hard clause and $S_j(1 \le j \le n)$ is a soft clause, a new blocking variable $b_j(1 \le j \le n)$ is added to each soft clause S_j . Solving the Partial MaxSAT problem for ϕ is reduced to minimize the number of satisfied blocking variables in $\phi' = \{H_1, \ldots, H_m, S_1 \lor b_1, \ldots, S_n \lor b_n\}$.

A minimal satisfying assignment can readily be found by iterative call to MiniSat. First run MiniSat on ϕ' to get an initial assignment. If there is no such assignment, we conclude that ϕ is unsatisfiable. If such an assignment is found, we count the number of satisfied blocking variables in the assignment. Let k be the number. We make a cardinality constraint $\sum_{j=1}^{n} b_j < k$. Let $CNF(\sum_{j=1}^{n} b_j < k)$ be a CNF encoding of the constraint. We add $CNF(\sum_{j=1}^{n} b_j < k)$ to ϕ' and run again. If the problem is unsatisfiable, k is the optimum solution. If not, the process is repeated with the new smaller solution.

We use the CNF encoding by O. Bailleux and Y. Boufkhad [2].

References

- Niklas Eén and Niklas Sörensson. An Extensible SAT-sover. In Proc. of SAT 2004, pp.333-336, 2004.
- [2] Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean Cardinality Constraints. In Proc. of CP 2003, pp.108-122, 2003.

 $^{^1\}mathrm{Kyushu}$ University is called "Kyushu Daigaku" or "Q-dai" in Japanese.