
The Sat4j Library 2.2, System Description

Daniel Le Berre and Anne Parrain

Université Lille - Nord de France, CRIL-CNRS UMR 8188
Université d’Artois, Lens,France

{leberre,parrain}@cril.univ-artois.fr

Abstract. Sat4j is a mature, open source library of SAT-based solvers
in Java. It provides a modular SAT solver architecture designed to work
with generic constraints. Such architecture is used to provide SAT, Max-
Sat and pseudo-boolean and solvers for lightweight constraint program-
ming. Those solvers have been evaluated regularly in the corresponding
international competitive events. The library has been adopted by sev-
eral academic softwares and the widely used Eclipse platform, which
relies on a pseudo-boolean solver from Sat4j for its plugins dependencies
management since June 2008.

1 Introduction

Sat4j (http://www.sat4j.org/) is an open source library of SAT solvers which
aims at allowing Java programmers to access cross-platform SAT-based solvers.
The Sat4j library started in 2004 as an implementation in Java of the Minisat
specification[10]. It has been developed since then with the spirit to allow testing
various combinations of features developed in new SAT solvers while keeping
the technology easily accessible to a newcomer. For instance, it allows the Java
programmer to express constraints on objects and hides all the mapping to the
various research community input formats from the user. Sat4j allows to solve
a range of decision and optimization problems using pseudo-boolean solving as
a universal engine for which the problems are translated. See Figure 1 for an
overview of the features available in the library.

Sat4j is developed using both Java and open source standards: the project is
supported by the OW2 consortium infrastructure and is released under both the
EPL and the GNU LGPL licenses. It has been adopted by various Java-based
academic software, in the area of software engineering[3]; bioinformatics[7]; or
formal verification[11], but also by the popular Eclipse open platform. Each time
an Eclipse’s user installs a plugin or updates its system, such request is converted
into a pseudo-boolean optimization problem modeling the plugins dependencies
and the plugins selection policy[13]. Such application in Eclipse makes it one of
the most widely used pseudo-boolean solver around the world (more than 13M
downloads of Eclipse 3.4 between June 2008 and June 2009 and since then more
than 12M downloads of Eclipse 3.5 as of Mai 2010[9]).

http://www.sat4j.org/
http://www.ow2.org/
http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/licenses/lgpl.html

2

Optimization Problems

MaxSat Pseudo-Boolean Optimization

Sat4j-Core Sat4j-PB-Res Sat4j-PB-CP

Resolution Cutting-Planes

Clauses/Cardinalities Clauses/Cardinalities/Pseudo-Boolean Constraints

Decision Problems

Sat Pseudo-Boolean Problems

Fig. 1. Overview of the features available in the SAT4J library

2 The conflict driven clause learning SAT solver

The underlying SAT solver (Sat4j-Core) is based on the original Minisat 1.x
implementation [10]: the generic conflict driven clause learning engine and the
variable activity scheme have not changed. Most of the key components of the
solver have been made configurable. Here are the settings used in the default SAT
solver available in Sat4j 2.2: the rapid restarts strategy is the in/out one proposed
by Armin Biere in Picosat[4]; the conflict clause minimization of Minisat 1.14 (so
called Expensive Simplification)[15] is used at the end of the conflict analysis; the
phase selection strategy uses the lightweight caching scheme of RSAT[14] ; finally,
the solver keeps derived clause with literals from few different decision levels as
proposed in 2009 award winner Glucose [2] using the settings “start cleanup at
5000 conflicts and increase that bound by 1000 conflicts when reached” provided
by Armin Biere.

Lazy data structure The library provides two implementations of a lazy data
structure for SAT: the classical watched literals as found in Minisat, using literals
move to front (from Picosat) and an implementation of the head/tail lazy data
structure where we swap the literals in the head and tail of the clause, instead
of moving the pointers. The two data structures have the same property to be
backtrack cost free. The former is easier and more elegant to implement. The
latter has not been patented. In our experience, the head/tail data structure is
slightly less efficient than the watched literals data structure.

Generic clause minimization The simplification of clauses derived by the conflict
analysis procedure presented in [15] has been made generic to work with arbitrary
constraints and data structures. This was achieved by relaxing two assumptions:

3

i) that the first literal of the reason is satisfied and ii) that all the other literals
in the reason are falsified. Those assumptions do not hold with pseudo-boolean
constraints because several literals may be propagated in such constraint, while
the remaining literals are either falsified or undefined. The first one does not hold
with the head/tail data structure for instance. The simplification procedure has
been made generic by applying the recursive procedure to the falsified literals of
the constraint only, using a specific test to gather the truth value of a literal on
all the literals of the constraint. That procedure is thus strictly slower than the
original one in case of pure clausal constraints using the watched literals data
structure.

3 The Pseudo-Boolean solvers

Pseudo-boolean constraints are more expressive and more compact than clauses
to represent some boolean formulas. They are for instance convenient to express
that an optimization function should have a value greater or lower than a specific
value. Two different categories of pseudo-boolean solvers are available in Sat4j:

Sat4j PB Res The solver is exactly the core SAT engine with the ability to
process cardinality constraints and pseudo-boolean constraints. Such constraints
are considered as simple clauses during conflict analysis (i.e. only their falsified
literals are taken into account). The positive side of using resolution is the ability
to use the generic clause minimization procedure defined in the previous section.
The negative side is that such solver cannot solve efficiently benchmarks such
as pigeon hole for instance. That solver is similar in spirit to PBS or SATZOO,
but using most recent techniques in SAT solving, arbitrary size coefficients and
the pseudo-boolean competition input format.

Sat4j PB CP This solver uses exactly the same settings as Sat4j PB Res but
relies on cutting planes instead of resolution during conflict analysis as described
in [5,8]. The proof system of the solver is thus more powerful than resolution and
it allows to solve crafted benchmarks such as pigeon hole. However, the conflict
analysis procedure is much more complex to implement than plain resolution
and uses arbitrary precision arithmetic to avoid overflow. Note that the solver is
two orders of magnitude slower than the resolution-based one in terms of number
of assignments per second on many benchmarks but it can solve some academic
benchmarks or prove the optimality of some benchmarks out of reach for the
resolution-based solver thanks to its powerful proof system.

The solvers get slower when dealing with pseudo-boolean constraints be-
cause we have not yet found an efficient lazy data structure similar to the head-
tails or watched literals for those constraints. This is especially the case for the
cutting-planes-based solver because the number of pseudo-boolean constraints
grows during the search. For that reason, we always represent inside the solver
a constraint in its simplest form (clause or cardinality constraint, if possible),
independently of the way it is represented originally.

4

4 From a decision to an optimization procedure

The optimization part is solved by strengthening (cf. algorithm 1). Once a so-
lution M is found, the value of the objective function objFct =

∑
aixi for such

solution is computed (y = objFct(M)). We add a new pseudo-boolean constraint
in the solver to prevent solutions with value equal or greater than y to be found:
objFct < y. Since all the added constraints are of the form objFct < y′ with
y′ < y, we simply keep one strengthening constraint per problem by replacing
objFct < y by objFct < y′ while keeping all learned constraints. Once the solver
cannot find a new solution, the latest one is proved optimal. Such an approach
is often referred to as “linear search”, in contrast with the more classical bi-
nary search using both a lower bound and an upper bound to locate the optimal
value. In our case, Sat4j solvers usually have a hard time to prove unsatisfiability
(i.e. lower bounds) of pseudo-boolean problems. This is the reason why we use
only upper bounds. Over the years, we succeeded in reducing the differences

input : A set of clauses, cardinalities and pseudo-boolean constraints
setOfConstraints and an objective function objFct to minimize

output: a model of setOfConstraints, or unsat if the problem is unsatisfiable.

answer ← isSatisfiable (setOfConstraints);
if answer is Unsat then

return Unsat
end
repeat

model ← answer;
answer ← isSatisfiable (setOfConstraints ∪ {objFct < objFct (model)});

until (answer is Unsat);
return model;

Algorithm 1: Optimization using strengthening (linear search)

between the SAT and pseudo-boolean solvers. The main noticeable changes in
case of optimization problems are:

– the heuristics takes into account the objective function in the phase selection
strategy: literals that appear with a negative weight will be satisfied first,
while literals appearing with a positive weight will be falsified first.

– release 2.2 also provides a better integration of the restarts strategy within
the optimization procedure: it takes into account the context of the search,
i.e. it is not reset at each call to the SAT solver in the algorithm 1.

5 The MaxSat solvers

Sat4j translates Partial Weighted MaxSat (PWMS) problems into pseudo-boolean
optimization ones. Since all the other variants (MaxSat, Partial MaxSat and
Weighted MaxSat) can be considered as specific cases of PWMS, such approach
can be used for all categories of the MaxSat evaluations.

5

The idea is to add a new variable per weighted soft clause that represents
that such clause has been violated, and to translate the maximization problem
on those weighted soft clauses into a minimization problem on a linear function
over those variables. Formally, suppose T = {Cw1

1 , Cw2
2 , . . . , Cwn

n } is the original
set of weighted clauses of the WPMS problem. We translate that problem into
T ′ = {s1 ∨C1, s2 ∨C2, . . . , sn ∨Cn} plus the objective function min : Σn

i=1wisi.
That approach may look unapplicable in practice because one needs to add as
many new selector variables as clauses in the original problem. However, there
are several cases for which no new variable is necessary:

hard clauses (wi = ∞) there is no need for new variables for hard clauses since
they must be satisfied. They can be treated “as is” by the SAT solver.

unit soft clauses those constraints are violated when its literal is falsified. As
such, it is sufficient to consider that literal only in the optimization function,
so no new selector variable is needed. In that case, the optimization function
should minimize Σn

i=1wili where li is the literal in the unit clause Ci.

Thus, on Partial [Weighted] MaxSAT, depending on the proportion of soft
clauses compared to the hard clauses, the number of additional variables can
be negligible compared to the original number of variables. This is especially
true for instances of the binate covering problem [6], a specific case of the par-
tial weighted MaxSAT problem, whose soft clauses are all unit, because we do
not need to add any new selector variable in that case. The pseudo-boolean
solver used in Sat4j MaxSAT is Sat4j PB Res. Since the underlying SAT solver
is tailored to solve application benchmarks, our approach performed poorly on
randomly generated PWMS problems but provided good results on some “in-
dustrial [weighted] partial MaxSAT” classes of application benchmarks during
the MaxSAT evaluation 2009.

6 Assumption-based unsat core

One of the most demanded features when Sat4j was integrated within Eclipse
was to be able to gather an explanation in case of failure. This is often re-
ferred to as minimal UNSAT core or Minimal Unsatisfiable Subformula (MUS)
in the SAT community. There are many existing approaches to compute those
UNSAT cores. But they usually require to keep track of the resolution steps per-
formed in the solver, or require some information from a local search solver. We
did not want to implement an intrusive solution in our solver. Furthermore, we
needed a solution that works with generic constraints (clauses and cardinality
constraints for the specific case of Eclipse[13]) because it allows a one-to-one
mapping between the constraints and the explanation. We decided to use the
idea of assumption-based satisfiability from the original Minisat and the ability
to derive for the final top-level conflict a clause only made of assumption literals
(similarly to the procedure implemented in Minisat 1.14) as described in [1]. As
for MaxSAT, we append a new selector variable per constraint. The set of as-
sumptions is the negation of the selector variables. If the formula is inconsistent,

6

the specific conflict analysis procedure applied on the top level conflict will re-
turn a subset of the assumptions that corresponds to an unsat core. That unsat
core is then minimized using a tailored QuickXplain algorithm [12], using also
selector variables to activate/deactivate clauses.

7 Conclusion

Sat4j is a mature, open-source library providing access to SAT-related technolo-
gies to Java programmers. While the core SAT engine is not really competitive
with state-of-the-art SAT solvers (last during the SAT Race 2008, not qualified
for the second stage of the SAT competition 2007 and 2009), the results of the
library on pseudo-boolean problems or on MaxSAT problems are reasonable,
sometimes even good on some specific classes of problems. The library is de-
signed to be reusable and robust. Sat4j has been adopted by several academic or
commercial softwares. Its inclusion into the open platform Eclipse brings SAT
technology to millions of desktop computers worldwide since June 2008.

References

1. Roberto Aśın, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodŕıguez-
Carbonell. Efficient generation of unsatisfiability proofs and cores in sat. In Proc.
of LPAR’08, pages 16–30, 2008.

2. Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
sat solver. In Proc. of IJCAI’09, pages 399–404, jul 2009.

3. Don S. Batory. Feature models, grammars, and propositional formulas. In Proc.
of SPLC’05, pages 7–20, 2005.

4. Armin Biere. Picosat essentials. JSAT, 4(2-4):75–97, 2008.
5. Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver.

In Proc. of DAC’03, pages 830–835, Anaheim, CA, 2003.
6. O. Coudert. On solving covering problems. In Proc. of DAC’96, pages 197–202,

1996.
7. Hidde de Jong and Michel Page. Search for steady states of piecewise-linear differ-

ential equation models of genetic regulatory networks. IEEE/ACM Trans. Comput.
Biology Bioinform., 5(2):208–222, 2008.

8. Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean
satisfiability solver. In Proc. of AAAI’02, pages 635–640, 2002.

9. Eclipse Foundation. http://www.eclipse.org/.
10. Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proc. of SAT’03,

pages 502–518, 2003.
11. Daniel Jackson and Felix Chang. http://alloy.mit.edu/.
12. Ulrich Junker. QuickXplain: Preferred explanations and relaxations for over-

constrained problems. In Proc. of AAAI’04, pages 167–172, 2004.
13. Daniel Le Berre and Pascal Rapicault. Dependency management for the eclipse

ecosystem. In Proc. of IWOCE2009, August 2009.
14. Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching scheme

for satisfiability solvers. In Proc. of SAT’07, pages 294–299, 2007.
15. Niklas Sörensson and Armin Biere. Minimizing learned clauses. In Proc. of SAT’09,

pages 237–243, 2009.

	The Sat4j Library 2.2, System Description
	Daniel Le Berre and Anne Parrain

