A Hyper-Heuristic Approach for MAX-SAT

Dalila Boughaci and Mourad Lassouaoui
LRIA- FEI- Computer Science Department
BP 32 EL-Alia, Beb-Ezzouar, Alger, 16111
dboughaci@usthb.dz
lassouaoui.mourad@gmail.com

Abstract
In this paper, we propose a hyper-heuristic approach for the NP-Hard optimization variant of the satisfiability problem, namely MAX-SAT. A hyper-heuristic is a high-level method that incorporates a set of low-level heuristics to handle classes of problems rather than solving one problem. In this paper, we investigate a new selection strategy based on both choice function and randomness to select adequate low-level heuristics at any given time for solving the MAX-SAT problem.

1 Introduction
In this paper, we are interested in the Maximum Satisfiability Problem (MAX-SAT) which is an optimization variant of SAT. The Boolean satisfiability problem (SAT) is of central importance in various areas of computer science, including theoretical computer science, algorithmic, artificial intelligence, hardware design and verification.

Formally, given a set of \(m \) clauses \(C = C_1, C_2, \ldots, C_m \) involving \(n \) Boolean variables \(X_1, X_2, \ldots, X_n \). A clause is a disjunction of literals. A literal is a variable or its negation. The SAT problem [Cook, 1971] is to decide whether an assignment of values to variables exists such that all the clauses are simultaneously satisfied.

Given a propositional formula in conjunctive normal form (CNF), the MAX-SAT problem consists in finding a variable assignment that maximizes the number of satisfied clauses. MAX-SAT is NP-Hard [Garey and Johnson, 1979] even when each clause has no more than two literals, while SAT with two literals per clause can be solved in polynomial time.

In this work, we investigate a hyper-heuristic approach for MAX-SAT. A hyper-heuristic is a high-level method that incorporates a set of low-level heuristics to handle classes of problems rather than solving one problem. The hyper-heuristic method permits to select automatically and during the search process the heuristic that should be applied for finding good quality solutions and avoiding search stagnation. The low-level heuristics can be either constructive or perturbative heuristics.

The constructive hyper-heuristic that uses a set of constructive heuristics starts with an empty solution and tries to complete it at each step while the perturbative hyper-heuristic starts with a complete initial solution and tries to find better ones from it. In general, a hyper-heuristic functions as follow: Given an instance of problem, the high level method used a certain selection or choice function strategies to choose the adequate low-level heuristic at any given time.

In this paper, we develop a hyper-heuristic for MAX-SAT problem. The proposed approach is a balance between choice function and randomness. The two strategies in the proposed hyper-heuristic approach is controlled by using a walk probability \(wp \) as done in stochastic local search [Hoos and Boutilier, 2000].

2 The proposed hyper-heuristic approach for MAX-SAT

We have studied some low-level heuristics dedicated to MAX-SAT. The proposed hyper-heuristic used the method of acceptance of solutions based on quality criterion. The selection method of low-level heuristics is a balance between two selection strategies which are choice function and Randomness.

2.1 The solution representation
A solution is represented by a binary chain \(X \) (a \(n \) Vector \(X \)), whose each component \(X_i \) receives the value 0 (False) or 1 (True). It represents an assignment of truth values to the \(n \) variables.

2.2 The objective function
The quality of a solution (fitness) is measured by using an objective function which consists in maximizing the number of satisfied clauses.

2.3 The low-level heuristics for MAX-SAT

The heuristic \(h_1 \)
The heuristic \(h_1 \) do a mutation on the current best solution found. the obtained solution is enhanced by using a local search method.

The heuristic \(h_2 \)
The mechanism used in the heuristic \(h_2 \) consist in combining the currently best solution with a current solution created with the heuristic \(h_1 \). The resulting solution is improved by using a local search.
The heuristic h_3
The heuristic h_3 is a stochastic local search method (SLS).

The heuristic h_4
In the heuristic h_4, the mutation operator is applied on the current solution. The mutation is done with a certain probability called mutation rate. The resulting solution is improved by using a local search method.

The heuristic h_5
In the heuristic h_5, we combine the best solution with a new solution generated randomly. As done in heuristic h_4, the resulting solution is improved by using a local search method.

The heuristic h_6
In the heuristic h_6, the mutation operator is applied on the best solution. The mutation is done with a certain probability called mutation rate. The resulting solution is improved by using a local search method.

The heuristic h_7
The heuristic h_7 chooses the variable that increases the number of satisfied clauses.

2.4 The Choice Function hyper-heuristic

The Choice Function hyper-heuristic consists of a selection method called Choice Function as well as a method of acceptance of solutions. The acceptance method validates only the new solutions that improve the current ones.

We note that Choice function is a score-based technique which assigns a weight to each low-level heuristic. Indeed, this technique allows us to measure the effectiveness of a low-level heuristic to decide which one should be selected for the next execution. This technique is based on three parameters which are: the CPU time consumed by an heuristic during the search process, the quality of the solution, and the time elapsed since the low level heuristic had been called.

In this work, we have used the same Choice Function defined in [Edmund et al., 2010b] and given as follows:

\[
\forall i, g_1(h_i) = \sum_n \alpha^{n-1} \frac{I_{n}(h_i)}{T_n(h_i)} \\
\forall i, g_2(h_{ID}, h_i) = \sum_n \beta^{n-1} \frac{I_{n}(h_{ID}, h_i)}{T_n(h_{ID}, h_i)} \\
\forall i, g_3(h_i) = \text{elapsedTime}(h_i) \\
\forall i, \text{score}(h_i) = \alpha g_1(h_i) + \beta g_2(h_{ID}, h_i) + \delta g_3(h_i) \\
\alpha, \beta, \delta \in [0, 1], \delta \in R.
\]

where h_i is a low-level heuristic and h_{ID} is the last low-level heuristic recently launched. α, β and δ values are fixed empirically.

2.5 The Random hyper-heuristic

Contrary to the Choice Function hyper-heuristic, in the random hyper-heuristic, the selection method is based on randomness. That is the low-level heuristic to be called at a given time is chosen randomly.

2.6 The proposed hyper-heuristic for MAX-SAT

As done in the stochastic local search, the stochastic hyper-heuristic used a similar principle. More precisely, the selection method in the stochastic hyper-heuristic is based on both choice function and randomness. The low-level heuristic to be called at each step is selected according to one of the two following criteria:

1. The first criterion consists in choosing the heuristic in a random way with a fixed probability $wp > 0$ as done in the Random hyper-heuristic.
2. The second criterion consists in choosing the heuristics according to the choice function as done is the choice function hyper-heuristic.

The process is repeated for a certain number of iterations called maxiter fixed empirically.

The proposed hyper-heuristic method is sketched in Algorithm 1.

Algorithm 1 : The hyper-heuristic method for MAX-SAT.

Require: a MAX-SAT instance, a set of low-level heuristics, the choice function : HBN, α, β, δ, maxiter wp

Ensure: a solution S
1: Generate an initial random solution δ and having a quality F
2: Evaluate the quality of the solution δ
3: $\delta = \delta* ; F* = F // F*$ is the quality of the best solution $\delta*$ found
4: for $I = 1$ to maxiter do
5: $r \leftarrow$ random number between 0 and 1;
6: if $r < wp$ then
7: $h_i = $ pick a random low-level heuristic (*Step 1*)
8: else
9: $h_i = $ pick a low level heuristic having the highest score according to HBN; (*Step 2*)
10: end if
11: Apply the heuristic h_i on δ to obtain new solution δ with a quality $F // \delta$ solution acceptance method.
12: if $(F(\delta) > F(\delta*))$ then
13: $\delta* = \delta; F*=F$
14: end if
15: end for
16: return the best solution found.

References

[Edmund et al., 2010b] Edmund K. Burke, Mathew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender zcan, and Rong. Qu.(2010), 'Hyper-heuristics: A Survey of the State
of the Art’. Technical Report, School of Computer Science and Information Technology, University of Nottingham.
