
A Hyper-Heuristic Approach for MAX-SAT

Dalila Boughaci and Mourad Lassouaoui
LRIA- FEI- Computer Science Department
BP 32 EL-Alia, Beb-Ezzouar, Alger, 16111

dboughaci@usthb.dz
lassouaoui.mourad@gmail.com

Abstract
In this paper, we propose a hyper-heuristic ap-
proach for the NP-Hard optimization variant of the
satisfiability problem, namely MAX-SAT. A hyper-
heuristic is a high-level method that incorporates a
set of low-level heuristics to handle classes of prob-
lems rather than solving one problem. In this pa-
per, we investigate a new selection strategy based
on both choice function and randomness to select
adequate low-level heuristics at any given time for
solving the MAX-SAT problem.

1 Introduction
In this paper, we are interested in the Maximum Satisfiabil-
ity Problem (MAX-SAT) which is an optimization variant of
SAT. The Boolean satisfiability problem (SAT) is of central
importance in various areas of computer science, including
theoretical computer science, algorithmic, artificial intelli-
gence, hardware design and verification.

Formally, given a set of m clauses C = C1, C2, . . . Cm

involving n Boolean variables X1, X2, . . . Xn. A clause is a
disjunction of literals. A literal is a variable or its negation.
The SAT problem [Cook, 1971] is to decide whether an as-
signment of values to variables exists such that all the clauses
are simultaneously satisfied.

Given a propositional formula in conjunctive normal form
(CNF), the MAX-SAT problem consists in finding a variable
assignment that maximizes the number of satisfied clauses.
MAX-SAT is NP-Hard [Garey and Johnson , 1979] even
when each clause has no more than two literals, while SAT
with two literals per clause can be solved in polynomial time.

In this work, we investigate a hyper-heuristic approach
for MAX-SAT. A hyper-heuristic is a high-level method that
incorporates a set of low-level heuristics to handle classes
of problems rather than solving one problem. The hyper-
heuristic method permits to select automatically and during
the search process the heuristic that should be applied for
finding good quality solutions and avoiding search stagna-
tion. The low-level heuristics can be either constructive or
perturbative heuristics.

The constructive hyper-heuristic that uses a set of construc-
tive heuristics starts with an empty solution and tries to com-
plete it at each step while the perturbative hyper-heuristic

starts with a complete initial solution and tries to find better
ones from it. In general, a hyper-heuristic functions as follow:
Given an instance of problem, the high level method used a
certain selection or choice function strategies to choose the
adequate low-level heuristic at any given time.

In this paper, we develop a hyper-heuristic for MAX-SAT
problem. The proposed approach is a balance between choice
function and randomness. The two strategies in the pro-
posed hyper-heuristic approach is controlled by using a walk
probability wp as done in stochastic local search [Hoos and
Boutilier, 2000].

2 The proposed hyper-heuristic approach for
MAX-SAT

We have studied some low-level heuristics dedicated to
MAX-SAT. The proposed hyper-heuristic used the method of
acceptance of solutions based on quality criterion. The selec-
tion method of low-level heuristics is a balance between two
selection strategies which are choice function and Random-
ness.

2.1 The solution representation
A solution is represented by a binary chainX (a n VectorX),
whose each component Xi receives the value 0 (False) or 1
(True). It represents an assignment of truth values to the n
variables.

2.2 The objective function
The quality of a solution (fitness) is measured by using an
objective function which consists in maximizing the number
of satisfied clauses.

2.3 The low-level heuristics for MAX-SAT
The heuristic h1

The heuristic h1 do a mutation on the current best solution
found. the obtained solution is enhanced by using a local
search method.

The heuristic h2

The mechanism used in the heuristic h2 consist in combining
the currently best solution with a current solution created with
the heuristic h1. The resulting solution is improved by using
a local search.



The heuristic h3

The heuristic h3 is a stochastic local search method (SLS).

The heuristic h4

In the heuristic h4, the mutation operator is applied on the
current solution. The mutation is done with a certain proba-
bility called mutation rate. The resulting solution is improved
by using a local search method.

The heuristic h5

In the heuristic h5, we combine the best solution with a new
solution generated randomly. As done in heuristic h4, the
resulting solution is improved by using a local search method.

The heuristic h6

In the heuristic h6, the mutation operator is applied on the
best solution. The mutation is done with a certain probability
called mutation rate. The resulting solution is improved by
using a local search method.

The heuristic h7

The heuristic h7 chooses the variable that increases the num-
ber of satisfied clauses.

2.4 The Choice Function hyper-heuristic

The Choice Function hyper-heuristic consists of a selection
method called Choice Function as well as a method of accep-
tance of solutions. The acceptance method validates only the
new solutions that improve the current ones.

We note that Choice function is a score-based technique
which assigns a weight to each low-level heuristic. Indeed,
this technique allows us to measure the effectiveness of a low-
level heuristic to decide which one should be selected for the
next execution. This technique is based on three parameters
which are: the CPU time consumed by an heuristic during
the search process, the quality of the solution, and the time
elapsed since the low level heuristic had been called.

In this work, we have used the same Choice Function de-
fined in [Edmund et al., 2010b] and given as follows:
∀i, g1(hi) =

∑
n α

n−1 In(hi)
Tn(hi)

∀i, g2(hID, hi) =
∑

n β
n−1 In((hID,hi)

Tn(hID,hi)

∀i, g3(hi) = elapsedT ime(hi)
∀i, score(hi) = αg1(hi) + βg2(hID, hi) + δg3(hi)
α, β ∈ [0, 1], δ ∈ R.

where hi is a low-level heuristic and hID is the last low-
level heuristic recently launched. α, β and δ values are fixed
empirically.

2.5 The Random hyper-heuristic

Contrary to the Choice Function hyper-heuristic, in the ran-
dom hyper-heuristic, the selection method is based on ran-
domness. That is the low-level heuristic to be called at a given
time is chosen randomly.

2.6 The proposed hyper-heuristic for MAX-SAT
As done in the stochastic local search, the stochastic hyper-
heuristic used a similar principle. More precisely, the selec-
tion method in the stochastic hyper-heuristic is based on both
choice function and randomness. The low-level heuristic to
be called at each step is selected according to one of the two
following criteria:

1. The first criterion consists in choosing the heuristic in a
random way with a fixed probability wp > 0 as done in
the Random hyper-heuristic.

2. The second criterion consists in choosing the heuristics
according to the choice function as done is the choice
function hyper-heuristic.

The process is repeated for a certain number of iterations
called maxiter fixed empirically.

The proposed hyper-heuristic method is sketched in Algo-
rithm 1.

Algorithm 1 : The hyper-heuristic method for MAX-SAT.
Require: a MAX-SAT instance, a set of low-level heuristics,

the choice function : HBN, α, β, δ, maxiter wp
Ensure: a solution S

1: Generate an initial random solution S and having a qual-
ity F

2: Evaluate the quality of the solution S
3: S = S∗ ; F∗ = F // F* is the quality of the best solution

S* found
4: for I = 1 to maxiter do
5: r⇐ random number between 0 and 1;
6: if r ≺ wp then
7: hi = pick a random low-level heuristic (*Step 1)
8: else
9: hi = pick a low level heuristic having the highest

score according to HBN; (*Step 2)
10: end if
11: Apply the heuristic hi on S to obtain new solution S

with a quality F // solution acceptation method.
12: if (f(S) > f(S*)) then
13: S* = S; F*=F
14: end if
15: end for

return the best solution found.

References
[Edmund et al., 2009] Edmund K. Burke, Mathew R. Hyde,

Graham Kendall, Gabriela Ochoa, Ender zcan, and John R.
Woodward.(2009), ’Exploring Hyper-heuristic Method-
ologies with Genetic Programming’, in Collaborative
Computational Intelligence.

[Cook, 1971] S.A. Cook. The complexity of theorem prov-
ing procedures. In 3rd ACM symp.on Theory of Comput-
ing, pages 151?158, Ohio, 1971.

[Edmund et al., 2010b] Edmund K. Burke, Mathew R.
Hyde, Graham Kendall, Gabriela Ochoa, Ender zcan, and
Rong. Qu.(2010), ’Hyper-heuristics: A Survey of the State



of the Art’. Technical Report, School of Computer Science
and Information Technology, University of Nottingham.

[Garey and Johnson , 1979] M.R. Garey and D.S. Johnson.
Computers and Intractability, A Guide to the Theory of
NP-Completeness. W.H. Freeman Company, San Fran-
cisco, 1979.

[Hoos and Boutilier, 2000] Hoos HH, Boutilier C. (2000),
’Solving combinatorial auctions using stochastic local
search’, In Proceedings of the 17th national conference on
artificial intelligence, pp: 22-29.


