
CCLS: Solver Description

Chuan Luo1, Shaowei Cai1,2, Zhong Jie1, and Kaile Su2

1 Key laboratory of High Confidence Software Technologies, Peking University, Beijing, China
2 Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia

chuanluosaber@gmail.com; shaoweicai.cs@gmail.com;
pkutcsj@gmail.com; k.su@griffith.edu.au

Abstract. This solver description introduces the basic ideas and the core strate-
gies used in our solver called CCLS for solving weighted and unweighted MAX-
SAT instances.

1 Introduction

Stochastic local search (SLS) algorithms for MAX-SAT usually work as follow. At
the beginning of local search, an assignment mapping to all variables is generated ran-
domly. Then the algorithm selects a variable to flip iteratively until timeout.

An important issue for local search is the cycling problem, i.e., revisiting a candi-
date solution that has been visited recently [5]. Recently, a new diversification strat-
egy called configuration checking (CC) was proposed for the cycling problem. CC has
been successfully used in minimum vertex cover (MVC) and SAT, resulting in two effi-
cient algorithms namely EWCC [4] and Swcca [3], respectively. Morever, a local search
solver called CCASat [1], which is improved from Swcca, won the random track of SAT
Challenge 2012. The CC strategy for SAT forbids a variable to flip if all its neighboring
variables have not changed their truth values since its last flip. A variable is said to be
configuration changed if since its last flip, at least one of its neighboring variables has
been flipped.

Based on the CC strategy, we propose a new heuristic called CCM (configuration
checking with make) for weighted MAX-SAT. According to CCM, if there exist vari-
ables which are configuration changed and have a positive make value, CCM picks the
one with greatest score to flip; otherwise CCM picks a variable randomly from a ran-
dom unsatisfied clause. We use the CCM heuristic to develop an SLS algorithm called
CCLS.

2 Configuration Checking and CCM Heuristic

We first give some definitions and notations used in the CCM heuristic. We use V (F )
to denote the set of all variables appear in the formula F . Two different variables are
neighbors when they appear in at least one clause simultaneously, and N(x) = {y |
y ∈ V (F ), y and x are neighbors} is the set of all neighbors of variable x.

Given a weighted conjunctive normal form (CNF) formula F , the cost of an assign-
ment α, denoted as cost(F, α), is the total weight of all unsatisfied clauses under α. For



2

a variable x, the property make(x) is defined as the total weight of clauses that would
become satisfied if the variable is flipped; the property break(x) is the total weight of
clauses that would become unsatisfied if the variable is flipped; the property score(x)
is the increment in the total weight of satisfied clauses if the variable is flipped, and can
be understood as make(x)− break(x). The CCM heuristic utilizes make and score to
select the flipping variable.

The CC strategy records the circumstance information of each variable, and forbids
flipping any variable whose circumstance information has not been changed since its
last flip. The ‘circumstance information’ is formally defined as the concept of configuration.

As stated in [2], in the context of SAT, the configuration of a variable x refers to
a vector consisting of Boolean values of N(x) (x’s all neighboring variables). We have
the formal definition of configuration as follows.

Definition 1. Given a CNF formulaF and an assignmentα to V (F ), the configuration
of a variable x ∈ V (F ) under α is a vector configuration(x) consisting of truth val-
ues of all variables in N(x) under α.

An implementation of CC is to employ a Boolean arrayConfChanged, whose size
equals the number of variables in the formula. For each variable x, ConfChanged(x)
measures the frequency (i.e., the number of steps) that configuration(x) has been
changed since x’s last flip. We maintain the array ConfChanged as follows.

– Rule 1: At the beginning of the local search, all the variables’ ConfChanged
values are set to 1.

– Rule 2: Whenever a variable x is flipped, ConfChanged(x) is reset to 0. For each
variable y ∈ N(x), ConfChanged(y) is set to 1.

Apparently, a variable x’s configuration has not been changed since x’s last flip
if and only if ConfChanged(x) is 0.

Now we define the concept of Configuration Checking and Make Positive (CCMP)
variables.

Definition 2. Given a CNF formula F and an assignment α to V (F ), a variable x is
defined configuration changed and make positive (CCMP) if and only if make(x) > 0
and ConfChanged(x) > 0.

We use CCMPvars to denote the set of all CCMP variables during the search. The
CCM heuristic can be briefly introduced as follows. If there exist CCMP variables,
then the CCM heuristic picks the one with greatest score; otherwise it picks a variable
randomly in an unsatisfied clause.

3 The CCLS Algorithm

The pseudo code of CCLS can be found in Algorithm 1. There is a parameter p in CCLS.
For random weighted MAX-3-SAT instances, we set p to 0.42. For random weighted
MAX-2-SAT instances, we set p to 0.37. For structured weighted MAX-SAT instances,
we set p to 0.2. For unweighted ones, we set p to 0.1. These settings are based on
preliminary experiments, and we believe the performance of CCLS could be improved
after some tuning.



3

Algorithm 1: CCLS
Input: CNF-formula F , maxSteps
Output: An assignment α∗ of F
begin1

generate a random assignment α, α∗ ← α;2
for step← 1 to maxSteps do3

if with the fixed probability p then4
select an unsatisfied clause c randomly;5
v ← a random variable for c;6

else7
if CCMPvars is not empty then8

v ← x with the greatest score in CCMPvars;9
else10

select an unsatisfied clause c randomly;11
v ← a random variable for c;12

α← α with v flipped;13
if cost(F, α) < cost(F, α∗) then α∗ ← α;14

return α∗;15

end16

References

1. Cai, S., Luo, C., Su, K.: CCASat: Solver description. In: Proc. of SAT Challenge 2012: Solver
and Benchmark Descriptions. pp. 13–14 (2012)

2. Cai, S., Su, K.: Local search with configuration checking for SAT. In: Proc. of ICTAI-11. pp.
59–66 (2011)

3. Cai, S., Su, K.: Configuration checking with aspiration in local search for SAT. In: Proc. of
AAAI-12. pp. 434–440 (2012)

4. Cai, S., Su, K., Sattar, A.: Local search with edge weighting and configuration checking
heuristics for minimum vertex cover. Artif. Intell. 175(9-10), 1672–1696 (2011)

5. Michiels, W., Aarts, E.H.L., Korst, J.H.M.: Theoretical aspects of local search. Springer
(2007)


