
Ramp: A Local Search Solver based on Make-positive Variables

Yi Fan, Zongjie Ma, Kaile Su, Abdul Sattar
Institute for Integrated and Intelligent Systems

Griffith University
zongjie.ma@griffithuni.edu.au

Chengqian Li
Department of Computer Science

Sun Yat-sen University

Abstract

Many local search techniques for SAT can be adopted
to solve MaxSAT. Yet often there are quite a few disjoint
subset of clauses which are unsatisfiable. Sometimes only
considering decreasing variables whose flip leads to less
violated clause weights is not enough. So CCLS extend
the notion of decreasing variables into make-positive vari-
ables whose flip turns at least one clause from unsatisfied to
satisfied. Here we adopt the make-positive heuristic to de-
velop a solver named Ramp. It adopts restarting techniques
and uses age to break ties, but abandons the configuration
checking techniques.

1. Introduction

The Maximum Satisfiability (MaxSAT) problem is a
well-known NP-hard problem. We use x1 . . . xn to be the
set of variables. A literal l is a variable or its negation, a
clause is a disjunction of literals. Given a CNF formula
F = C1 ∧ . . .∧Cm, we associate Ci with a positive integer
w(Ci). Given a complete solution s, the cost of s is the total
weight of the unsatisfied clauses, i.e.,

cost(s) =
∑

Ci IS UNSATISFIED UNDER s

w(Ci).

Given a weighted MaxSAT instance as above, the problem
is to find a solution which minimize the cost.

There are three other types of MaxSAT problems which
can all be encoded as a weighted MaxSAT problem. In un-
weighted MaxSAT problems, the weights associated with
each clause are 1. In partial MaxSAT, clauses are dis-
tinguished into hard clauses and soft clauses, where each
soft clause has weight 1 and each hard clause has a weight
which is greater than the total weight of all soft clauses. In
weighted partial MaxSAT, each soft clause can have a dif-
ferent weight.

2. Local Search for MaxSAT

The CCLS [1] adopts the configuration checking and the
make-positive heuristics.

Given an assignment s and a variable x, we use s−x to
denote the assignment obtained from s by flipping x. Given
an assignment α, we use cost(α) to denote the total weight
of unsatisfied clauses. We use score(x) to denote the in-
crease of satisfied clause weights. That is, score(x) =
cost(s)−cost(s−x). We usemake(x) to denote the number
of unsatisfied clauses that will become satisfied by flipping
x. We use MP to denote the set of variables whose make
is greater than zero. We use age(x) to denote the number of
flips that have been performed since last time x was flipped.

As to partial MaxSAT, previous researchers realize that
the gap between hard clause weights and soft clause weights
should be as small as possible. So we propose a novel
heuristic to narrow the gap. Each time when we update the
best solution, we decrease the weights of all hard clauses,
as is shown below.

Algorithm 1: pickVar

1 if MP 6= ∅ & with probability p then
2 v ← a variable in MP with the greatest score,

breaking ties in favor of the greatest age;
3 else
4 C ← a random unsatisfied clause;
5 v ← a random variable in C;

6 return v;

The algorithms of our solver are described in Algorithm
1 and 2, where the parameter p is set to 0.6 in advance.
Notice that we adopt a restart mechanism in our solver.

3. Usage

./Ramp instance

4321

Algorithm 2: Ramp

1 max flip← 20 ∗ |V | if |V | < 105;
2 max flip← +∞ otherwise;
3 weighthard← hard clause weight;
4 while elasp time < cutoff do
5 flip bound← max flip;
6 s← a random generated assignment;
7 while step < flip bound do
8 if cost(s) < cost∗ & cost(s) < weighthard

then
9 s∗ ← s;

10 cost∗ ← cost(s);
11 weighthard← cost∗;
12 foreach hard clause Ci do
13 w(Ci)← weighthard

14 v ← pickV ar();
15 flip v;

16 max flip← max flip ∗ 4;

References
[1] C. Luo, S. Cai, W. Wu, Z. Jie, and K. Su. CCLS: an efficient

local search algorithm for weighted maximum satisfiability.
IEEE Trans. Computers, 64(7):1830–1843, 2015.

4322

